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A  new  method  for  state  of  health  (SOH)  and  remaining  useful  life  (RUL)  estimations  for  lithium-ion
batteries  using  Dempster–Shafer  theory  (DST)  and  the  Bayesian  Monte  Carlo  (BMC)  method  is proposed.
In  this  work,  an  empirical  model  based  on  the  physical  degradation  behavior  of  lithium-ion  batteries  is
developed.  Model  parameters  are  initialized  by  combining  sets  of  training  data  based  on  DST.  BMC  is  then
used to  update  the  model  parameters  and  predict  the  RUL  based  on available  data  through  battery  capacity
monitoring.  As  more  data  become  available,  the  accuracy  of  the  model  in  predicting  RUL  improves.  Two
eywords:
ithium-ion batteries
tate of health
emaining useful life
empster–Shafer theory
ayes updating

case studies  demonstrating  this  approach  are  presented.
© 2011 Elsevier B.V. All rights reserved.
onte Carlo

. Introduction

Lithium-ion batteries are a common energy solution for many
ypes of systems including consumer electronics, electric vehi-
les, and military and aerospace electronics, due to their high
nergy density, high galvanic potential, lightness of weight,
nd long lifetime compared to lead–acid, nickel–cadmium, and
ickel–metal–hydride cells [1,2]. The degradation of a lithium-

on battery can be characterized by the decrease in capacity over
epeated charge cycles. Capacity is the amount of electrical charge

 battery can hold in its fully charged state. For many applications,
ailure is considered to occur when the capacity of the battery is
educed to below 80% of its rated value [3,4]. At this point, the
attery is considered to be an unreliable power source and should
e replaced, because it tends to exhibit an exponential decay of
apacity after it passes this point.

Failure of a battery could lead to loss of operation, reduced capa-
ility, downtime, and even catastrophic failure. For example, in
pril 2000 a battery failure resulted in an electrical malfunction that
isabled normal landing gear extension capability and led to the
rash of a plane during landing. Another battery failure caused the

oss of the Mars global surveyor in November 2006. In this case, the
urveyor’s batteries were exposed to sunlight, and the high temper-
ture resulted in the premature depletion of the batteries. Recently,

∗ Corresponding author. Tel.: +1 301 405 5323; fax: +1 301 314 9269.
E-mail address: pecht@calce.umd.edu (M. Pecht).

378-7753/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.jpowsour.2011.08.040
a survey conducted by Emerson Network Power showed that one
of the biggest causes of data center downtime is uninterruptible
power supply (UPS) battery failures. For data centers, one hour of
downtime could lead to tens of thousands of dollars in losses.

Prognostics and health management (PHM) is an enabling
discipline consisting of technologies and methods to assess the
reliability of a product in its actual life cycle conditions to deter-
mine the advent of failure and mitigate system risk [5].  With a
PHM system for batteries in place, maintenance decisions can be
made on a conditional basis and users can be given ample fore-
warning before a failure occurs so that risk factors can be mitigated.
PHM comes in two main approaches: physics-of-failure (PoF) and
data-driven. PoF-based prognostic methods utilize knowledge of a
product’s life cycle loading conditions, geometry, material proper-
ties, and failure mechanisms to estimate its remaining useful life
(RUL) [6,7]. Data-driven techniques extract features from perfor-
mance data such as current, voltage, time, and impedance, using
statistical and machine learning techniques to track the product’s
degradation and estimate its RUL [8].  Data-driven methods do not
require specific knowledge of material properties, constructions,
or failure mechanisms [9],  and avoid developing high-level phys-
ical models of the system, so that they are less complex than PoF
based approaches. Data-driven methods can capture the inherent
relationships and learn trends present in the data to provide RUL

predictions.

Kozlowski [10] proposed a data-driven prognostic approach
that combines three predictors— auto-regressive moving average
(ARMA), neural networks, and fuzzy-logic— to predict the RUL  of

dx.doi.org/10.1016/j.jpowsour.2011.08.040
http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:pecht@calce.umd.edu
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Fig. 1. The curve fitting of the m

atteries. These predictors were trained by the data sets of batteries
f the same size and chemistry under various loading conditions.
owever, collecting training data that has good coverage over all

he possible loading conditions can be time consuming and expen-
ive. Burgess proposed a method to estimate the RUL for valve
egulated lead–acid batteries based on capacity measurements and
alman filtering [11]. The capacity fade trend is divided into two
hases: a slowly decreasing phase followed by a much more rapid
ecreasing phase. When the battery capacity falls to the second
hase, the Kalman filter is trigged to give predictions of RUL based
n a probabilistic capacity fade model. However, the duration of
he second phase of battery capacity fade is very short compared
o the whole battery life, so this approach cannot give predictions
t an early time of a battery’s life. Saha et al. [12,13] used the rel-
vance vector machine (RVM) and a particle filter to predict RUL
f lithium-ion batteries. In their method, RVM was employed to
earn the non-linear patterns in data, and particle filter is used to
stimate the RUL with a state-space model based on impedance
pectroscopy data. This approach shows good accuracy. However,
he impedance measurement requires expensive and bulky equip-

ent and is time consuming. In addition, the battery should be
isconnected from the charger or load during the measurement.
hese shortcomings confine its implementation in on-board appli-
ations.

To solve these problems, a new battery PHM approach is pro-
osed in this paper, aiming at on-board applications and RUL
redictions from an early point in the battery’s life. Based on data
nalysis, a new model consisting of two exponential functions is
eveloped to model the battery capacity fade. This model has a
ood balance between the modeling accuracy and complexity, and
an accurately capture the non-linearity of the battery capacity fade
rend. In order to achieve accurate prediction from an early point
n life, two algorithms are used to make the model parameters
uickly adapt to a specific battery system and loading condition.
he first step is an initial model parameter selection based on the

empster–Shafer theory (DST) [14,15]. The DST is an effective data

usion method. It has a lot of applications in sensor information
usion [16–18],  expert opinion combination, and classifier com-
ination [19–21]. DST allows one to gather the information from
Cycle

q. (1) to the type A battery data.

available battery data to elicit the initial model parameters with
the highest degree of belief. The second step is the Bayesian Monte
Carlo (BMC) [22–24],  which is used to update the model parameters
based on new measurements. With the tuned parameters obtained
by BMC, the capacity fading model can be extrapolated to provide
the SOH and RUL predictions. It will be shown in the case studies
that BMC  can give more accurate parameter estimations than the
extended Kalman filter (EKF). Compared to traditional battery RUL
prognostic methods, like those in Refs. [10–13],  the advantages of
the proposed battery prognostic approach are: the ability to provide
accurate prediction from an early point of the battery’s life, no need
for a large amount of training data, and the potential application to
on-board battery PHM systems.

This paper is organized as follows. Section 2 introduces the bat-
tery capacity degradation model developed in this study. Section
3 discusses the uncertainties in the battery degradation process.
Section 4 introduces the Dempster–Shafer theory and its applica-
tion to initial model parameter selection. Section 5 introduces the
theory for the Bayesian Monte Carlo. Section 6 presents the algo-
rithm for the remaining useful life calculation. Section 7 presents
the application of the proposed approach to battery prognostics.
Conclusions are drawn in Section 8.

2. Capacity degradation model

As a battery ages, the maximum available capacity of it will
decrease. To investigate the capacity fade, two  types of commer-
cialized lithium-ion batteries were tested. The first type (type A)
has a rated capacity of 0.9 Ah, and the second type (type B) has
a rated capacity of 1.1 Ah. Both types of batteries have a graphite
anode and a lithium cobalt oxide cathode which were verified using
electron dispersive spectroscopy (EDS). The cycling of the batter-
ies was  accomplished by multiple charge–discharge tests using
an Arbin BT2000 battery testing system under room temperature.
The discharge current for the type A batteries was 0.45 A, and for

type B batteries it was 1.1 A. The charging and discharging of the
batteries were cut off at the manufacturer’s specified cutoff volt-
age. The capacity of the tested batteries was estimated using the
Coulomb counting method, since full charge–discharge cycles were
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Fig. 2. The curve fitting of the m

onducted. In actual practice, batteries may  not always run from a
ully charged state to a fully discharged state. In industrial applica-
ions, a common practice in battery management is to conduct the
apacity test regularly to monitor the capacity fade and determine
hether the battery requires replacement [4,11].  The capacity data

btained by capacity testing can be used to predict the battery’s
OH and RUL based on the proposed approach in this paper. There
lso exist some advanced techniques that can be used to estimate
apacity from partial discharge data, such as the EKF based method
25] and total least square method [26]. For more information about
he capacity estimation methods, readers can refer to Ref. [27], in
hich several capacity estimation methods were reviewed.

The capacity fading trends of the two types of batteries are
hown in Figs. 1 and 2 respectively. It can be seen that the capac-
ty fade occurs in a near linear fashion followed by a pronounced
eduction. The loss of capacity is often brought on by side reac-
ions that occur between the battery’s electrodes and electrolyte
hich consume lithium, thus removing it from the Faradic pro-

ess. Solid precipitates arise as the product of these side reactions
nd adhere to the electrodes, increasing the internal resistance of

he cell. The combined effects of these reactions reduce the bat-
ery’s ability to store electrical energy [3,28,29]. Fig. 3 shows the
mpedance spectroscopy measurements for the battery A3. It can
e seen that the Nyquist plots show a dramatic rise in the elec-
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ig. 3. The impedance spectroscopy measurements for the battery A3 at different
ycles.
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q. (1) to the type B battery data.

trolytic resistance, charge transfer resistance, and the double layer
capacitance with increased cycling based on the Randles model.
This points to increased resistance of the solid–electrolyte inter-
face (SEI) layer as well as decomposition of the electrolyte as the
reason for capacity fade. Refs. [13,30] used the sum of exponen-
tial functions to model the increase of internal impedance due to
SEI thickening with time. As battery capacity fade is closely related
to the internal impedance increase, potential models for capacity
fade can also be exponential models. Based on regression analy-
sis of experimental data, it is found that a model in the following
form can well describe the capacity fade trend of many different
batteries:

Q = a · exp(b · k) + c · exp(d · k) (1)

where Q is the capacity of the battery; k is the cycle number; the
parameters a and b can be related to the internal impedance; and
c and d stand for the aging rate.

To demonstrate the suitability of the model in Eq. (1) in depict-
ing battery degradation, Figs. 1 and 2 show the curve fitting result
(solid line) of Eq. (1) to the capacity data of type A and type B bat-
teries, respectively. The model parameters were estimated by the
curve fitting tool in Matlab. To quantify the performance of the
model, the goodness-of-fit statistics [31] are shown in Table 1. The

root mean squared errors (RMSE) are close to 0 while the R2 and
adjusted R2 are near to 1. These statistical parameters indicate that
the proposed model is suitable to represent the capacity fade data.

Table 1
Goodness of fit statistics.

Battery ID R2 Adjusted R2 RMSE

A1 0.9948 0.9947 0.0049
A2  0.9912 0.9911 0.0055
A3  0.9537 0.9527 0.0114
A4  0.9869 0.9861 0.0084
B1  0.9909 0.9909 0.0190
B2 0.9889 0.9889 0.0202
B3  0.9924 0.9924 0.0136
B4 0.9929 0.9929 0.0203
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Table 2
Fitted parameters from each set of training data, including the bounds for the 95%
confidence intervals.

Battery ID Parameter Low bound Mean Upper bound

A1

a −1.660E−03 −1.042E−03 −4.240E−04
b 2.068E−02  2.268E−02 2.467E−02
c  9.079E−01 9.190E−01 9.301E−01
d  −1.210E−03 −1.035E−03 −8.600E−04

A2

a  −2.007E−06 −9.860E−07 3.442E−08
b 5.283E−02 5.752E−02 6.221E−02
c 8.931E−01 8.983E−01 9.035E−01
d −9.007E−04 −8.340E−04 −7.670E−04

A3

a  −3.788E−05 −1.530E−05 7.272E−06
b  5.398E−02 6.296E−02 7.193E−02
c  8.631E−01 8.757E−01 8.883E−01
d −1.188E−03 −9.400E−04 −6.920E−04

Table 3
Belief values for each parameter.

Battery ID a b c d

A1 0.333 0.333 0.333 0.333

j i

Using this to convert back to the basic belief assignment, and then
normalizing these assignments, the values for m can be obtained as

Table 4
Basic assignments for each parameter value.
W.  He et al. / Journal of Power

. Uncertainties in battery prognostics

In this study, the battery degradation is modeled by Eq. (1).  This
odel can be well fit to each battery, as shown in Figs. 1 and 2. How-

ver, it is easy to see that there can be large discrepancies between
ach sample’s degradation trends. These variations can arise from
everal sources: (1) Inherent system uncertainties: because of the
ncertainties in the manufacturing assemblies and material prop-
rties, batteries may  have different initial capacities, which can be
bserved from Fig. 1. Each battery may  also be individually affected
y impurities or defects, which may  lead to different aging rates. (2)
easurement uncertainties: uncertainties are likely to arise from

ackground noise of measurement devices and from system pro-
ess noise. (3) Operation environment uncertainties: the rate of
apacity fade can be affected by usage conditions such as the ambi-
nt temperature, discharge current rate, depth of discharge, and
ging periods. (4) Modeling uncertainties: the regression model is
n approximation of the battery degradation, which will result in
ome modeling error.

In the degradation in Eq. (1),  the parameters a and c characterize
he initial capacity, meanwhile the parameters b and d represent
he aging rate. If the model parameters are inaccurately defined,
rrors will occur in the prediction. Uncertainty management tools
re needed to account for the noise or errors in capacity estima-
ions, the variations in battery chemistries and loading conditions,
tc. Therefore, the DST and BMC  are adopted to ensure that the pro-
osed degradation model adapts to a specific battery system and

oading condition. The final RUL prediction can be obtained in the
orm of a probability density function so that the confidence level
f the prediction can be assessed.

. Model initialization using Dempster–Shafer theory

To provide accurate predictions from an early point in life, it is
ritical that these model parameters are well representative of the
rue physical response of the battery. The available battery data can
e used to initialize these parameters. A good combination of the

nitial parameters will shorten the convergence time of the model
o the real system respond. Here, we use the mixing combination
ule of the Dempster–Shafer theory to get the basis, or the “prior
odel”, for the BMC  updating. The mixing combination rule was

roposed to combine evidence based on the belief measure of each
ata set [15]. It assumes that if two bodies of evidence agree, they
hould be given a higher value of belief and hence weigh more
hen combining each of the pieces of evidence together [32]. The
etailed steps of DST in initializing model parameters are illustrated
s follows using the data from batteries A1, A2, and A3.

First, the Gauss–Newton algorithm in the Matlab curve fitting
ool was used to fit the proposed model to each subset of data in
he training set. These fits produced the parameter estimations with
5% confidence bounds shown in Table 2.

Next, each of the parameters from the respective data sets,
xpressed through confidence intervals, were compared in order
o calculate the belief measure associated with each parameter.
nitially, because we assume all sources to be equally credible; the
asic belief assignment, which assesses the likelihood of each set,

s given an equal value:

(Ai) = 1
n

(2)

here m(Ai) is the basic belief assignment for a set Ai and n is the

umber of sets in the training set family. Since 3 training data sets
ere used, the initial basic belief assignment for each data set is

.333. By using this as a starting point we can calculate the belief
easure of each parameter. The belief measure Bel(Ai) for a set Ai is
A2  0.333 0.333 0.333 0.333
A3 0.666 0.333 0.333 0.666

defined as the sum of all the basic belief assignments of the subsets
of the set of interest:

Bel(Ai) =
∑

all Aj⊆Ai

m(Aj) (3)

Eq. (3) implies that we must consider parameter intervals that are
subsets of other parameter intervals in order to compute the belief
measure. Take the parameter a for example, In Table 2 the param-
eter interval of A3 contains that of A2. As a result, the belief value
of A3 for the parameter a is 0.333 + 0.333 = 0.666. This analysis pro-
vides us with the following belief values for each of the parameters
from the training data set family shown in Table 3. Now that the
belief measures have been evaluated for each parameter, we can
go back and update the basic belief assignments from the belief
measure with the following inverse function,

m(Ai) =
∑

all Aj⊆Ai

(−1)|Ai−Aj |Bel(Aj) (4)

where |Ai − Aj| is the difference of the cardinality of the two
sets. When computing the cardinality of each parameter set, the
Lebesgue measure must be used, because each interval was defined
only by its upper and lower bounds and is therefore uncount-
able. However, because the intervals are so small, and the sizes
of the intervals are relatively similar, the difference in cardinalities
between Ai and Aj can be considered zero. Therefore, the assign-
ment conversion for this special case can be approximated by:

m(Ai) ≈
∑

all A ⊆A

Bel(Aj) (5)
Battery ID a b c d

A1 0.2 0.333 0.333 0.2
A2  0.2 0.333 0.333 0.2
A3 0.6 0.333 0.333 0.6
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hown in Table 4. Now each parameter can be combined using the
eighted arithmetic mean:

P =
3∑

i=1

m(Ai)h(Ai) (6)

here h(Ai) is the estimated parameter from training data Ai, CP
s the combined parameter from the initial model, and m(Ai) are
he basic belief assignments or the weight factor. This gives us the
ollowing combined parameter values:

a = −0.00022
b = 0.04772
c = 0.89767
d = −0.00094

(7)

. Model updating via Bayesian Monte Carlo

Once the initial parameter values are determined and capac-
ty data are collected, the parameters can be updated based on
ayes’rule. The estimation of the parameters will gradually con-
erge to their true values as more and more capacity data becomes
vailable.

To model the uncertainty as discussed above, it is assumed that
he parameters: a, b, c, and d, as well as the error of the regression

odel, are subject to Gaussian distribution:

ak = ak−1 + ωa ωa∼N(0,  �a)

bk = bk−1 + ωb ωb∼N(0,  �b)

ck = ck−1 + ωc ωc∼N(0,  �c)

dk = dk−1 + ωd ωd∼N(0,  �d)

(8)

k = ak · exp(bk · k) + ck · exp(dk · k) + v v∼N(0, �Q ) (9)

here Qk is the capacity measured at cycle k, and N(0,  �) is Gaussian
oise with zero mean and standard deviation �.

The initial values a0, b0, c0, and d0 are set as the weighted sum
f the model parameters obtained from the training data based on
ST. For convenience, we denote Xk = [ak, bk, ck, dk] as the parameter
ector at cycle k. The goal of this study is to estimate the probability
istribution P(Xk|Q0:k) of the parameter vector Xk given a series of
apacity measurements: Q0:k = [Q0, Q1, . . .,  Qk]. Within a Bayesian
ramework, the posterior distribution P(Xk|Q0:k) can be recursively
omputed by two steps: prediction and update. Given the proba-
ility distribution P(Xk−1|Q0:k−1) at cycle k − 1, the prediction stage

nvolves using the model (8) to obtain the prior probability distri-
ution of Xk via the Chapman–Kolmogorov equation:

(Xk|Q 0:k−1) =
∫

P(Xk|Xk−1)P(Xk−1|Q 0:k−1) dXk−1 (10)

t cycle k, a new observation Qk is obtained and used to update the
rior distribution via Bayes’rule [22,23],  so as to obtain the required
osterior distribution of Xk as follows:

(Xk|Q 0:k) = P(Xk|Q 0:k−1) P(Qk|Xk)
P(Qk|Q 0:k−1)

(11)

here the normalizing constant is:

(Qk|Q 0:k−1) =
∫

P(Xk|Q 0:k−1)P(Qk|Xk) dXk (12)

he recurrence relation between Eqs. (10) and (11) forms the basis
or the exact Bayesian solution [22,23]. However, this recursive
ropagation of the posterior density is only a conceptual solution
n general. It is hard to analytically evaluate these distributions,
ecause they require the evaluation of complex high-dimensional

ntegrals [22]. However, it is possible to approximately and numer-
cally solve this Bayesian updating problem by adopting Monte
ces 196 (2011) 10314– 10321

Carlo sampling [22,23]. The key idea is to represent the probability
density function (PDF) by a set of random samples with associ-
ated weights and compute estimates based on these samples and
weights as below:

P(Xk|Q 0:k) ≈
N∑

i=1

ωi
kı(Xk − X i

k) (13)

where X i
k, i = 1, 2, 3, . . . , N, is a set of independent random sam-

ples drawn from P(Xk|Q0:k); ωi
k

is the Bayesian importance weight

associated with each sample X i
k; and ı(·) is the Dirac delta func-

tion. In practice, P(Xk|Q0:k) is usually unknown. In this case, one can
resort to importance sampling, i.e., to sample X i

k from an arbitrar-
ily chosen distribution �(X i

k|Q 0:k) called the importance function.
Then the estimate of ωi

k
can be obtained by [22–24]:

ωi
k = P(Q 0:k|X i

k) P(X i
k)

�(X i
k|Q 0:k)

(14)

The weight should be normalized by:

ωi
k = ωi

k∑N
j=1ωj

k

(15)

A recursive formula for updating the weights can be obtained by
[24]:

ωi
k = ωi

k−1

P(Qk|X i
k) P(X i

k|X i
k−1)

�(X i
k|X i

k−1, Q 0:k)
(16)

If the importance function is chosen by �(X i
k|X i

k−1, Q 0:k) =
P(X i

k|X i
k−1), then the weight updating rule becomes:

ωi
k = ωi

k−1P(Qk|X i
k) (17)

As the number of Monte Carlo sampling N→ ∞,  the approximation
Eq. (13) approaches the true posterior density P(Xk|Q0:k).

6. The SOH prognostics and RUL estimation

Using the Bayesian Monte Carlo approach, the parameter vector
can be updated at each cycle. In the updating procedure, N samples
are used to approximate the posterior PDF. Each sample represents
a candidate model vector X i

k, i = 1, 2, . . .,  N, so the prediction of Q will
have N possible trajectories with the corresponding importance
weights ωi

k
. Then, the h-step ahead prediction of each trajectory

at cycle k can be calculated by:

Q i
k+h = ai

k · exp[bi
k · (k + h)] + ci

k · exp[di
k · (k + h)] (18)

The estimated posterior PDF of the prediction can be obtained by
the prediction at each trajectory with associated weights:

P(Qk+h|Q 0:k) ≈
N∑

i=1

ωi
kı(Qk+h − Q i

k+h) (19)

The expectation or mean of the h-step ahead prediction at the cycle
k is given by:

Q k+h =
N∑

i=1

ωi
kQ i

k+h (20)

Since the failure threshold is defined as 80% of the rated capacity,

the RUL estimation Li

k
of the ith trajectory at the cycle k can be

obtained by solving the following equation:

ai
k · exp[bi

k · (k + Li
k)] + ci

k · exp[di
k · (k + Li

k)] = 0.8Qrated (21)
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Fig. 5. Prediction result at 18 cycles for the battery A4. The BMC  prediction model

averaging approach for A4 at 18 cycles and B4 at 250 cycles are
shown in Figs. 8 and 9, respectively. In Fig. 8, the prediction error
and SD are 4 and 12 respectively, which are greater than those
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Fig. 4. The flowchart of the prop

hen, the distribution of RUL at the cycle k can be approximated
y:

(Lk|Q 0:k) ≈
N∑

i=1

ωi
kı(Lk − Li

k) (22)

he expectation or mean of the RUL prediction at cycle k is given
y:

k =
N∑

i=1

ωi
kLi

k (23)

As a summary, Fig. 4 presents the flowchart of the proposed
rognostic scheme. First, DST is used to combine the available bat-
ery data sets so as to get a starting point for BMC  updating. As the
apacity measurements of the monitored battery become available,
odel parameters are updated by BMC  to track the degradation

rend of the battery. The RUL prediction can be made by extrapo-
ating the model to the failure threshold.

. Prognostic results

In this section, two case studies are conducted to validate the
roposed approach. In the first case study, the data from A1, A2
nd A3 are used to elicit the initial model by the DST. A4, which
hows the largest difference in its capacity fade trend compared to
he other three batteries, is used as the testing sample to validate
he proposed algorithm. Similarly, in the second case study, initial

odel parameters are selected based on B1, B2, and B3, and B4
s used for testing. The error of the mean RUL estimation and the
tandard deviation (SD) of the RUL estimation are used to quantify
he performance of the proposed methodology.

The prognostic results for A4 at 18 cycles are shown in Fig. 5,
here only data from the first 18 cycles are used to update the
odel. The error of the mean RUL prediction is 1 cycle, and the SD

f the estimated RUL is 6 cycles. Fig. 6 presents the prediction result
f A4 at 32 cycles. Since more data are available to update the model
arameters, the accuracy of the mean RUL prediction is improved
s the predicted failure cycle matches with the real value, and the
D of the RUL prediction is reduced to 2 cycles, meaning that the
onfidence level of the prediction increases.

Fig. 7 shows the prognostic results for battery B4 at 250 cycles.
he predictions in the solid line well capture the non-linear fade
rend of battery capacity. The prediction error of the failure cycle is

 cycles away from the actual failure cycle, and the SD of the RUL
rediction is 35 cycles. Based on the RUL PDF, the 95% confidence

ound of the predicted failure cycle can be obtained as 550–670
ycles.

To demonstrate the effectiveness of DST in aggregating infor-
ation from training data, comparison studies were conducted
was  initialized by DST. The prediction error is 1 cycle, and the standard deviation of
RUL estimation is 6 cycles.

between DST and a mean averaging approach. In the mean aver-
aging approach, the initial parameters are defined by the average
of each parameter from each training data set and are used as the
starting point for BMC  updating. The prediction results of the mean
Cycle

Fig. 6. Prediction result at 32 cycles for the battery A4. The BMC  prognostic model
was  initialized by DST. BMC  accurately predicted the failure time. The standard
deviation of the RUL estimation is 2 cycles.
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Fig. 7. Prediction results at 250 cycles for the battery B4. The BMC  prognostic model
was  initialized by DST. The prediction error is 7 cycles, and the standard deviation
of  the RUL estimation is 35 cycles.
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Fig. 8. Prediction results at 18 cycles for the battery A4. The initial model parameters
were defined by the mean averaging approach. The prediction error is 4 cycles, and
the standard deviation of the RUL estimation is 12 cycles.
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Fig. 9. Prediction results at 250 cycles for the battery B4. The initial model parame-
ters  were defined by the mean averaging approach. The prediction error is 31 cycles,
and the standard deviation of the RUL estimation is 62 cycles.
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Fig. 10. Prediction results at 250 cycles for the battery B4 using extended Kalman
filtering. The prediction error is 52 cycles.

obtained by using the DST (Fig. 5). In Fig. 9, the prediction error is
31 cycles. It is 24 cycles larger than the prediction error obtained
by the DST. In addition, the SD of the RUL estimation in Fig. 9 is
62 cycles, which is 27 cycles larger than that obtained by the DST
(Fig. 7). Therefore, the DST has been shown to be effective in fusing
the available training data to provide the optimal initial parameters
to start the BMC  updating.

To compare the performance of the BMC  with EKF, Fig. 10 shows
the prediction results based on EKF for the battery B4. The degrada-
tion model and initial parameters used in EKF are the same as those
used in BMC. In Fig. 10,  the EKF over-predicted the failure cycle of
the battery, and the prediction error of the failure cycle is 52 cycles,
which is greater than that obtained by BMC  by 45 cycles.

The BMC  approach is computationally efficient. In the case
study, 1000 samples were used in the BMC. The computational time
of the BMC  parameter updating at each cycle was within 10 ms
using an Intel Core i7 M60  2.67 GHz processor and 4 Gb RAM under
a Matlab 2010 environment.

8. Conclusions

Analysis of lithium-ion battery data shows that capacity fade can
be modeled by the sum of two  exponential functions of discharge
cycles. RUL predictions can then be made by extrapolating the
capacity fade model to the failure threshold. To estimate the model
parameters and predict the RUL, a data-driven approach based on
the DST and BMC  was developed. The DST was used to select the ini-
tial model parameters for the BMC  parameter estimation. The BMC
is a combination of Monte Carlo and Bayesian updating. In the BMC
algorithm, a set of possible degradation trajectories are simulated
based on the capacity fade model. Each trajectory is then assigned
a weight according to its conformity to the capacity measurements
using the Bayesian rule. The model parameters are estimated as
the weighted sum of the model parameters defined by each tra-
jectory. The RUL PDF is approximated by the RUL estimation at
each simulated degradation trajectory with associated weights. The
mean RUL estimation is given by the weighted sum of the RUL esti-
mation of each simulated trajectory. Based on the obtained RUL
information, advance warning of the battery failure can be achieved
and preventive maintenance of the battery can be scheduled so as
to improve the availability and reliability of the battery-powered
system.
To show how the method can be applied, we conducted case
studies. It was found that the proposed approach performed bet-
ter than the traditional methods. Compared to the mean averaging
method, the prediction accuracy at 250 cycles for battery B4 was
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mproved by 24 cycles when using the DST to define the initial
odel parameters. In addition, by using the BMC, the mean RUL

stimation for the battery B4 was improved by 45 cycles in the
ccuracy as compared to the extended Kalman filter. Therefore,
he capacity fade model can efficiently converges to the battery
egradation trend by using the proposed parameter estimation
pproach, and accurate RUL predictions can be achieved from an
arly point of the battery life. Another merit of the proposed method
s that the RUL prediction can be given in a form of probabil-
ty distribution, so that the confidence level of the prediction can
e assessed. The narrower RUL PDF indicates a higher prediction
onfidence.

The contributions of this study can be summarized in three
oints: the first is a new model for the capacity degradation of

ithium-ion batteries. This model can well characterize the non-
inear trend of capacity fade and is simple enough for on-board
pplications. Using this model and the proposed parameter estima-
ion method in this paper, accurate RUL prediction can be achieved
rom an early point of the battery’s life. The second is a novel

ethod based on DST to solve the model initialization problem,
hich is common for parameter estimation algorithms in battery
odeling, including least square, Kalman filter, and BMC. Tradi-

ionally, the initial parameter is selected randomly or based on
xperience. However, poor initial parameters can make the esti-
ation converge slowly or even diverge. This research provides a

imple but effective parameter initializing method based on DST.
he third is a Bayesian Monte Carlo approach adopted to esti-
ate the model parameters and provide the RUL prediction. This
ethod can take into account the measurement noise and dynami-

ally update the model parameters based on new measurements so
s to provide accurate estimations. The improvements of the BMC
ver the commonly used extended Kalman filter in parameter esti-
ation can be seen from the comparison study. The BMC  can also

e applied to other estimation and identification problems in the
attery research.

This work is an initial effort towards a comprehensive PHM
olution for lithium-ion batteries. It has limitations and needs
mprovement. For example, the effects of capacity gain during bat-
ery rest periods were not considered in this study. The models
or the effects of rest should be incorporated into the prognostic
ramework in the future work.
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